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Who is the IRIS for?

« Cyber Risk Quantification
o Insurance buyers

« Infosec strategists

« SOC analysts

« Vulnerability managers

« GRC professionals

e ...and youl!




Loss Event Frequency (LEF)



Hindsight is 20/20: Flashback to IRIS 20/20

Figure 6: Comparison of annual breach likelihood among firms by sector
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Hindsight from 20/20: LEF lessons learned

1. LEFs based on sector alone will be heavily skewed toward
smaller firms.

a. Org size has a major effect on LEF (orders of magnitude).

2. Estimating population size is HARD but has a HUGE effect on
LEF.

b. Using a known population (e.g., F1000) avoids this.
c. Our denominator last time was almost certainly too large.

d. Due to the uncertainty, we chose to create upper and lower bound
LEFs.



New to IRIS 2022

Upper bound: A risk averse-estimate using
the number of organizations observed over

the entire measurement period.

Lower bound: A risk tolerant estimate
using the number of firms suspected to

be present in a population.




Overall loss event frequency (upper bound)
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Probability of experiencing at least one event

Probability of a firm experiencing a given number of events

Revenue category Oneormore Twoormore  Threeor more
Upper Bound

More than $100B 32.41% 13.08% 6.45%
$10B to $100B 24.84% 8.35% 3.64%
$1B to $10B 17.08% 3.58% 1.03%
$100M to $1B 12.96% 1.82% 0.35%
$10M to $100M 11.37% 1.35% 0.17%

Lower Bound

More than $100B 29.52% 9.26% 3.55%
$10B to $100B 14.16% 2.73% 0.74%
$1Bto $10B 6.74% 0.90% 0.18%
$100M to $1B 2.23% 0.15% 0.02%

$10M to $100M 0.47% 0.01% 0.00%



Relative LEF among sectors

® Hospitality (1.17x)
® |Information (1.16x)
® Financial (1.15x)
® Retail (1.12x)
: ® Transportation (1.05x)
—0 Healthcare (1.03x)
Education (0.98x) e—

Real Estate (0.95x) @

Administrative (0.94x) &———

Entertainment (0.93x) @

Manufacturing (0.92x) e

Professional (0.91x) e

Other Services (0.91x) ®

Utilities (0.91x) @

Management (0.91x) e
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Construction (0.77x) e

Relative to the Public sector



Loss Magnitude (LM)



The typical and the extreme
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Size continues to matter

(Revenue unknown)
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Losses as a percentage of revenue

67% of losses  |17% of losses | 10% of losses 6% of losses
less than 1% 1%to 10% | 10% to 100% exceed annual revenue
:'.",’."'.O.'o 0a® %00 0l 0. "0 "ce%h e -
2107 9% .0 0% e (0 te0 f et " 0 SO e o *e. 2% o
Under $50M 5ot el avatta e ot o enl e te s F i 0 o
:::' .0:.:"..0.0'..-‘.°:0..'.0...'.'.."-.‘ ) IR AL aidle

o
oy
o
ey e
=955 23005 % AR TV s
Over SSOM S a85108 .8, 220208555 R TeNms 03) assse wel W o b
ECK S
o))
05
28

.01x X 1x 10x 100x 1,000x  10,000x
Losses as a multiple of revenue

OfAt dvet Eresmdied) 0% ofani9®sh cfveamues| 8996 wae wcanmoary GiMBs!
SMBs




Distribution of losses

Diamonds mark the
95th percentile
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Parameters of loss
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90% 95% 99%
It’s all about the LEC
S a‘ a’ O u e mee More than $100B $5.068B $10.052B $46.452B
$10B to $100B $3.117B $6.206B $29.293B
$1Bto $10B $2.219B $4.428B $21.204B
13% $100M to $1B $1.657B $3.312B $16.102B
12% $10M to $100M $1.417B $2.833B $13.841B
11% Lower Bound
0
More than $100B $5.068B $10.052B $46.452B
10% 8.6% chance of orethan
- $100K or greater loss $10B to $100B $1.986B $3.967B $19.145B
...................................... £ $1Bto $10B $731M $1.461B $7.220B
8% i $100M to $1B $195M $390M $1.947B
%D 7% $10M to $100M $22M $45M $225M
o A 4.8% chance of
Q 6%
q.) . $1M or greater loss
% " L R T R R R R IR R R e R R e R R T ,' ............ ?
"'5 § 4% ;
> 3 1.8% chance of
= Y
= © ; $10M or greater loss
0
% Q>)\ 2 /0 ...................................... .: ......................... ?
e R . I
o 1% ;
o = 0% ! . ! -
S1K $10K S$100K S1M S10M $100M S1B S$10B

Total yearly loss



Finding a Pattern of ATT&CK



Hindsight 20/20: How can we scale?

1. The IRIS 20/20 focused mainly on LEF and LM.

2. In IRIS 20/20 Xtreme, we manually researched the 100 largest
loss events and included details on threat actors and actions

behind them.
a. This is impossible for the entire dataset of >100k events.

3. S0 we spent 2 years on R&D to classify incident patterns,
ATT&CK techniques, and VERIS actions at scale.



Incident patterns
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Modeling patterns at scale

1. Started with ground truth

Hundreds of events manually labelled

2. Natural Language Process (NLP) decoding of available
iInformation on events

3. Multiple evaluations with dozens of different models

4. Evaluate performance

5. Monthly retrain with new data and new ground truth



Evaluating model performance
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ATT&Cng at scale

""‘""': . Similar techniques to pattern
i ,; ~—— | recognition

;A - et 4'I'IIE N\t

oM - M“IIE ATT&CK e Initial ATT&CK compromise

J 'FRAMEWORK?!

~ method

% Sl

f
}
|

. Mitigating controls.

« Additional lateral movement
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ommon initial access ATT&CK techniques
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th
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But what about MY company?



xample: Applying IRIS to a single firm for

() IRIS Risk Retina

i Risk at a Glance

This IRIS Risk Retina® focuses on incidents experienced by nonprofit organizations over a ten
year period from January 2012 through December 2021. This date range gives a sufficiently-
sized sample of 1,994 loss events for analysis while also remaining relevant for organizations
managing present day risks. Here’s the key stats to support cyber risk quantification that
we’ll expand and explore in the sections that follow.

Nonprofit

A BASELINE ANALYSIS OF
CYBER RISK FACTORS IN
THE NONPROFIT INDUSTRY

Mar 2022
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The upper-bound average annual probability
of a nonprofit organization experiencing one
or more cybersecurity incidents that become
publicly known is 12.5%.

Reported financial losses stemming from
incidents impacting nonprofits vary widely
around a geometric mean of $145,000. The
95th percentile impact runs $9M.

Based on frequency and loss models for the
nonprofit industry, a typical organization has
less than a 1% chance of losing more than
$10M in a single year.

But cyber risk has a very long tail of rare
but highly damaging events that demand
attention. The 95% Tail Value at Risk for a
large nonprofit exceeds $350M.

System intrusions are far and away the
most common and costly type of incident in
nonprofits. They account for over half of all
events and two-thirds of total losses.

Annualized probability

12.5*%

of one or more events

Typical loss magnitude

$145K

in nonprofit incidents

<1% chance of losing

S10M

ormorein 1year

Tail Value at Risk

S350M

at the 95% level

Intrusions behind

55/66

% of events / losses

Download now to see exactly what a Risk Retina for your sector contains!


https://www.cyentia.com/wp-content/uploads/Cyentia-Retina-Nonprofit.pdf
https://www.cyentia.com/wp-content/uploads/Cyentia-Retina-Nonprofit.pdf
https://www.cyentia.com/wp-content/uploads/Cyentia-Retina-Nonprofit.pdf
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